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1. INT2ODUCTION

Let > ("is preferred to") be a bina-zy relation on the set • of simple

probability measures or 'gambles' defined on a set T of consequences.

Throughout this study it will be assumed that:

1. T is the Cartesian product of two or more nondegenerate closed and

bounded real intervals;

2. - on 9 satisfies the axioms of von Neumann and Morgenstern (1947)

or an equivalent system (Herstein and Milnor, 1953; Fishburn, 1970) so that

there exists u: T + Re such that

P - Q iff EP(t)u(t) > EQ(t)u(t), for all P,Q E , (1)

T T

with u* satisfying (1) when u does iff u* is a pooitive affine transformation
ab ab

of u of the form u* = u where u (t) = au(t) + b, a > 0;

3. The von Neumann-Morgenstern utility function u in (1) is continuous

(Grandmont, 1972; Foldes, 1972) in the relative usual product topology for T.

The purpose of the study is to analyze methods for approximating u. The

N present paper deals with two-dimensional concequence spaces T = X x Y; a

sequel paper will exe.miu,:• T = T x T x...x T with n > 3. Although con-
1 2 n

4 tinuity of u is not impjlcd by the axioms that are necessaty and sufficient

for (1), and plausible examples of discontinuities are easy to imagine,

•, continuiLy is crucial to Pmo'r work in approximation theory (e.g. Cheney,

1966, and lou entz, 1966) and will be assumed here.

t I
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It It is one thing to postulate the existence of continuous u on T that

absatisfies (1) and is unique up to transformations u with a > 0, but quite

another thing to estimate u in an actual decision situation. Consequently,

much effort has been devoted to theoretical and methodological aspects of

utility function assessment. The assessmen- and approximation of single-

variable utility functions is discussed by Meyer and Pratt (1968), Bradley

and Frey (1975), and Ohlson and Kallio (1975) among others. Theoretical

work in multiattribute or multivariate utility (Fishburn, 1965, 1974;

Pollak, 1967; Raiffa, 1969; Keeney, 1971, 1972a; Fishburn and Keeney, 1974;

IFarquhar, 1975) has focused on axioms for *- on V~ that allow u , ...'tn)
I1

to be written as a combination of functions defined on fewer than n attributes,

such as u(t ,. ,...,t) u (t ) + u (t) +...+ u (t ) or u(t ,t ,...,tn) -
1 2 1 2 2 n n 2 n

u (t )u (t )...u n(t n). A desire to simplify the task of utility assessment
1 1 2 2 f

has motivwted much of this work. Examples of its application to specific

situations are given by Raiffa (1969), Keeney (1972b, 1973) and Keenev and

Nair (1974). Sicberman (1;75) has developed an interactive computer program

for assessment in the additive and multiplicative cases.

Research workers who have been involved in the development of special

forms for multiattribute utility functions realize of course that the

independence axioms that characterize the special forms may fail to hold in

V A a given situation because of evaluative interdependencies among the attri-

butes. Consequently, there is a need to explore the general problem of

I multiattribute utility assessment in the absence of simplifying independence

assumptions. Although there are several approaches to this problem, the21 present study will focus on approximations of u that are written as finite

sums of products of functions on the individual attributes. In the context

of T = X x Y, the form of approximation that will be used here is
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m
v(x,y) E fi(x'gi(y). (2)

i= 1

The only direct assessment of u that will be required for (2) involves either

the evaluation of u at a finite number of points in T or th= evaluation of a

finite number of single-variable conditional utility functions of the form

u(xyj) and u(xi,y), where x, is a fixed element in X and yj is a fixed

element in Y. The functions fi and gi may involve the conditional utility

functions or they may be specified independently of any utility assessment.

In later sections it will be abouned--as a first approximation--that there

is no error in the assessment of the u values used in the right hand side

of (2).

There are three main reasons for using (2). First, it is generally

conceded that it is much easier to assess single-attribute utility funccions

than to assess two-attribute functions in their full generality. Secondly,

the sum-of-products form of (2) is computationally attractive in the context

of optimization algorithms. Finally, the right hand side of (2) subsumes

the special forms of u(x,y) that have thus far been characterized by indepen-

dence axioms (Fishburn, 1974). The most general of these is u(x,y) =

u (x) + u (y) + h (x)h (y), which agrees with (2) when m = 3 and f = u1 2 1 2 1 s

f E 1, f = h , g E 3, g = u and g = h
2 3 2 3 2

The present paper is organized as follows. Some basic ideas from

approximation theory are briefly noted in the next section, and a result

from this theor) is pýesented in our utility context. Tue simple additive

and multiplicative approximations are examined in section 3. Section 4 then

discusses some elemeittary interpolation approximations based on finite sets

of single-variable conditional utility functions. Ti final section examines



approximations that are exact on a grid in X x Y: that is, they give

v(xiy) = u(xiy) for every xi in a finite subset of X and all y E Y, along

with v(x,yj) = u(x,yj) for every yj in a finite 3ubset of Y and all x E X.

Readers who are familiar with the diversity and scope of approximation

theory will realize that the present study represents a very modest step in

the development of a theory and methodoloby for the approximation and

assessment of multiattribute utility functions. it is hoped that the study

will elicit additional interest in the topic.

2. REMARKS ON APPROXIMATION THEORY

This section outlines a few basic ideas of approximation theory,

comments on aspects of (2) that will play a role throughout the paper, and

provides an application of approximation theory to our utility context. A

broader introduction to approximation theory can be obtained from the paper

by Buck (1959) and the books by Lorentz (]•6) and Cheney (1966). Other

suggested worKs include the papers by Rivlin and Shapiro (1961), Lorentz

(2972) and Jerome (1973), the collections edited by Langer (1959) and

Loreptz (1973), and various articles in the Journal of Approximation Theory.

Appropriate to our purposes let S = [0 , 1 ]n be the n-dimensional unit

cube and lot C(S) be the real linear space (Kelley and Namioka, 1963)

of all continuious real valued functions on S. The most coimonly used norm

in approximatioi, theory for measuring distances between functions in C(S)

is the uniform norm

jfjIf sup If(s)I = max If(s)I, f E C(S), (3)
SSES S
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approximations that are exact on a grid in X x Y: that is, they give

V(Xjpy) = u(xjiy) for every x. in a finite subset of X and all y E Y, along

with v(x,yj) * u(x,yj) for every yj in a finite subset of Y and all x C X.

Readers who are familiar with the diversity and scope of approxinati'n

theory will realize that the present study represents a very modest step in

the development of a theory and mthodoloty for the approximation and

assessment of uultiattribute utility functions. it is hoped that the study

will elicit additional interest in the topic.

2. REKAURS ON APPROXIMATION THEORY

This section outlines a few basic ideas of approximation theory,

coments on aspects of (2) that will play a role throughout the paper, and

provides an application of approximation theory to our utility context. A

broader introduction to approximation theory can be obtained from the paper

by Buck (1959) and the books by Lorentz (1966) and Cheney (1966). Other

suggeeted works include the papers by Rivlin and Shapiro (1961). Lorentz

(2.972) and Jerome (1973), the collections edited by Langer (1959) and

Lorestz (1973), and various artinles in the Journal of Approximation Theory.

Appropriate to our purposes let S - [0 , 1]n be the u-dimensional unit

cube and lot C(S) be the real linear space (Kelley and Namioka, 1963)

of all continiotts real valued functions on S. The most commonly used norm

in approximatioL theory for measuring distances between functions in C(S)

is the uniform norm

fII l- sup If(s)- max If(s)I, f E C(S), (3)
SES S
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the latter equality arising from compactness and continuity. (Least squares

minimization problems use the quadratic or Euclidean norm.) The uniform norm

will be used throughout our study. Convergence in this norm, i.e. 1fm- fl

- 0 as m ÷ • with f,f ,f ,.E. E C(S), is equivalent to the uniform convergence
12

of the f to f.m

Let f E C(S) be given and let D be a nonempty subset of C(S) whose

functions are proposed as approximations of f. Define d(D,f) - inf 11g - fl
gED

and let Df - {g E D: Ijg - fjl - d(D,f)}. Hence d(D,f) is the 'distance'

from D to f and the functions in Df provide the best approximations to f as

•u•,,d by (3). Among otner things, approximation theory is concerned with
the following questions:

1. Can d(D,f) be specified precisely, or is it possible to obtain

tight bounds on it?

2. What can be said about the functions in D for which l ! - <

d(D,f) + 6 for given 6 > 0?

3. Is Df nonempty, and, if so, can its structure and/or specific

contents be identified?

The set D is frequently taken to consist of a finite-dimensional sub-

space of C(S) generated by a basis of linearly independent functions
N

9 ''"gN in which case D a : E Re for all k1. For example,
k I

D might consist of all polynomials in the n variables of highest degree r,

or, in our utilitN context, D might be based on con itional univariate

utility functions. When D is a finite-dimensional linear subspa-.e of C(S),

Df is convex and nonempty (e.g., Buck, 1959, Theoren 2).

Buck (1959) illustrates the above ideas with a specific example using

n 2and N - 5. Let f(x,y) xy and l~t gthrough g in C(S) be
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respectively the identity function (g 1), x, y, x and y. Buck shoi.:

that d(D,f) - 1/4 and that Df - {af + (1- a)f 0 < a < 1} where. (%,y)
ii1 2 -- - 1

(x2 + y 2 )/2 - 1/4 and f (x,y) - x + y - (x 2 + yz)/2 - 1/4. S~2

When D is an infinite-dimensional but 'small' subspace of C(S), '.t

may be true that d(D,f) - 0 for every f E C(S) although Df must then be empty

for 'most' f E C(S). A useful theorem developed by Bohman and Korovkin

(Korovkin, 1959; Lorentz, 1966, p. 7) shows that d(Df) - 0 for all f E C(S)

can sometimes be established by showing only that d(D,f) - 0 for a finite

number of specific tunctions f. Consider, for example, the famous Weierstran

approximation theorem (Lorentz, 19b,, p. 10), which says that d(D,f) - 0 for

all f E C(S) when S - {(t ,...,tn): 0 < ti < 11 and D is the space of all

ordinary algebraic polynomials in t ,...,tn. Usiug the Bernstein polynomials

•- •m m k k

B (f;t ,...,t E ... E f( mk t b (t) (4)
m 1 n k-= k mo m1'" n

-m k in-k,
where bk(ti) (k)ti(l - ti) , the Bohman-Korovkin theorem allows one to

prove the Weierstrass theorem by showing that B m(f) - f as m - • for each

of the 2n + 1 functions 1, tit t , (i =

Although the above discussion barely scratches the surface of approxi-

mation theory, it will suffice for our present purposes. We now return to

our concern with two-attribute utility functions.

Considerations in Utility Approximations

Throughout the remainder of this paper we shall take T X Y [0,1]2

without loss of generality since the closed and bounded inteivals for the

Stwo attributes can be mapped linearly onto [0,1]. Two different types of

S'
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Sapproximations T continuous u on T by (2) will be considered according to

Swhether the approximction attempts to provide exact .-alue,, of u at the

points in T at which u is assessed directly. (See the diacussion following

M2).) Cases in which v(x,y) - u(x,y) for certain designated points in T or
'S

for certain conditional utility functions on X or Y are cases of approxima-

•,ion by interpolation. Some elementary interpolation methods are presented

in the ensuing sections.

The proof method mentioned above for the Weierstrass theorem is not

based on interpolation since the Bernstein polynomials, which in the present

context can be written as

m mm
IV m(X,y) E E u2/mj/m)(i )x(1- X) )yJ(l- y)m-, (5)
mj=o J=o

do not generally yield v m(i/m,j/m) = u(i/m,j/m). In fact, as sho;: by Paber

(1914), the Weierstrass theorem cainot be proved using interpolatiug poly-

nomials. Since the Weierstrass theotem shows that 11v - ull -,- 0 as m *

(5) provides a specific instance for (2) in which the aipproximatlon for u

becomes precise in the limit. Nevertheless, it appears (Lorentz, 1966,

p. 102) that the convergence of vm to u is ratter slow compared to the, W m m
convergence obtained by polynomials in Dum) where D(mý E L a ij x y:•: i=Q j=Q
a ~Re).
ij

Approximations (2) can also be classified according to whether v

undergoes the same affine transformation as does u when u on the right hand
ab

side of (2) is replaced by u = au + b, a -, 0. Gi-ven v(x,y) = fi(x)gi(y)

as in (2), we shall let vab denote the runction obtained from Zfi(x)g i(y)

ab
when every instance of u in this expression is ieplaced by u . It is

.4
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abimportant to realize that v need not be equal to av + b. We shall say

that v is affine preserving at (a,b) if and only if vab (x,y) = av(x,y) + b

for all (x,y) E T, and that v is offine preserving if and only if it is

affine preserving at (a,b) for all a > 0 and all real b. Since

v abx,y) E X[ou(i/m,j/m) + b](i)xi (1 x)m i(A)yj(l - y)mj
m 4j

" aVm(x,y) + b,

the approximation (5) is affine preserving. The approximations considered

in ensuing sections are affine preserving when b - 0, but several are not

generally affine preserving at (a,b) when b 0 0.

SWe shall also be interested in whether v is monotonic in x and/or y

when u is monotonic in x and/or y. if v is monotonic increasing in x whenever

u is monotonic irncreasxg in x, and if v is monctonic decreasing in x whenever

u is monotonic decreasing in x, then ;e shall say that v is monotoricity

preserving in x. A similar convention holds for y. In addttion, v is said

to be monotonicity preserving if it is monotonicity preserving in each

variable.

3. ELEMENTARY APPROXIMATIONS

This section examine, Aimple additive, multiplicative, and additive-

multiplicative forms for v. ConditL2is for ? on I under which these forms

are exact (i.e. !Iv - ull = 0) when the it•nct-ons involved in (2) are properly

aligned are presented in Fishburn (1974) and will not be repeated here- with

the exception of a comment foll- "ng the :roof of Theorem 5,



The Simple Additive Form

We begin with the simple additive form. Recall that T X x Y [0,112.

THEOREM 1. Given fixed (x ,y ) 0 [0,j]2 suppose that

' v(x,y) = u(x,y) + u(x ,y) - u(x ,y ), for all (xy) E T. (6)

Then v(x,y) - u(x,y) if x - x or y = y, and v is affine preserving and

monotonicity preserving, In addition, with W = max u(x,y) - min u(x,y),
T T

(x ,y) can be chosen so that

(a) liv - ull < (/2)W,
(b) 1 Iv - ull I W if u is monotonic in either x or y,

S(c) liv - ul < (1/2)W if u is monotonic in both variables.

If u is constant then W = 0 and (a) through (c) hold with equality. In

general liv - ull - 0 iff u(x,y) + u(x ,y ) u(x,y) + u(x ,y) for all

(x,y) E T, regardless of how (x ,y ) is chosen. It may also be noted that

Et•h" bound in (c) is satisfied when the constant approximation v(x,y) =

(miax u+ min u)/2 is regardless of whether u is monotonlz. However,

this approximation does not have the forci of (6).

Proof. The assertions in the first part of Theorem I are obvious
____ Thein o arefrom

(6). The heavy line segments in Figure 1(a) show where v must equal u.: To

Figure 1 about here

prove the latter part of the theorem, observe that

iv(x,y) - u(x,y)l = Iu(x,y) + u(x ,y ) - u(x,y ) - u(x ,Y)l,

1Iv - ull = max Iv(x,y) - u(x,y)
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For notational convenience suppose that u is not constant and let max u(x,y)
T

= 1 and min u(x,y) = 0. Choose (x ,y ) so that u(x ,y ) 1/2. Then
T

liv - ul- < 3/2. If u is monotonic in x then, when (x,y) is in region I of

Figure l(a),

lv(x,y) -- u(x,y)j < max {lu(x,y) - u(x ,y), lu(x ,y ) - u(x,y )I} < 1,

and similar calculations in the other three regions show that lIv - I< 1.

"* •The same conclusion holds if u is monotonic in y. Finally, suppose that u

is monotonic. We consider explicitly only the case in which u increases

in x and decreases in y: other cases are left to the reader. By examining

signs of u differences it follows that, when (x,y) is in region I of Figure

l(a),

fv(x,y) - u(x,y) < min {max {u(x ,y) - u(x,y),u(x ,y) - u(x,y

max {u(x,y) - u(x,y ),u(x ,y) - u(x ,y)}

< max {l/2,mii {u(x ,y) - u(x,y),u(x,y) - u(x,y )}} = 1/2

A

since min {u(x ,y) - u(x,y),u(x,y) - u(x,y )} < 1/2. When (x,y) is in region

II of Figure 1(a), Jv(x,y) - u(x,y)! < min {max {u(x,y) - u(x ,y),u(x,y ) -

u(x ,y )}, max {u(x,y) - u(x,y ),u(x ,y) - u(x ,y )}1 _ max 1l/2,min {u(x,y) -

u(x ,y),u(x,y) - u(A,y )}} = 1/2 since 1/2 < min {u(x ,y),u(x,y)} _ max {u(x ,y),1 ---

. u(x,y )} _, u(x,y) _ 1. The region III and IV analyses are similar respectively

to th'se for regions I and II. The affine transformation u on u for which

Smax u 1 and min u = 0 then gives conclusions (a), (b) and (c) as stated

in the theorem. Q.E.D.

•' The preceding proof chose (x ,y) so that u(x ,y ) is midway between

min u and max u. Despite the fact that many points in T have a u value that

4 "



is midway between the extremes of u, it does not follow that one of these

will minimize liv - ull when v is given by (6). Although it is not generally

possible to select (x ,y) to minimize liv - ull without knowing u on all of

T, there are cases in which this might be done when u is not completely

known. To illustrate this, we shall say that u is conservative when it is

strictly increasing in both variables and

{0 < x < x* < 1,0 < y < y* < 1} 1 u(x,y*) + u(x*,y) '> u(x,y) + u(x*,y*). (7)

If approximation v is conservative whenever u is conservative, then v will be

said to be conservatism preserving. Since (6) gives v(x,y*) + v(x*,y) -

v(x,y) + v(x*,y*), it is not conservatism preserving.

A plausible example of conservatism (Fishburn, 1973; Richards, 1973)

arises when th- pairs in T are two-period income streams. Then (7) holds if

the even-chance gamble between (x,y*) and (x*,y), which ensures one of the

larger amounts x* or y*, is preferred to the even-chance gamblr between

(x,y) and (x*,y*), which could (pr. = 1/2) result in the lower amounts x and

y in both periods.

THEORE'M 2. Suppose that u is conservative and v is given by (6). Let

1lv - u11 denote the value of 1lv - ull when (x ,y ) is used as the

fixed point in (6) and let

A = u(l,0) + u(0,l) - u(0,0) - u(l,l).

Then (x ,y ) can be chosen so that A/4 < li - ul(x Y < A/3, and it is

impossible to have liv - ull e A/4. Also let

Syij(x,y) = (-l)'+J[u(x,j) + u(i,y) - u(x,y) - u(i,j)] (8)148

I
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for i E {0,1} and j E {0,1}. Then yij 0 for each of the four (i,j) pairs,

and

v - ulII(x'y) =max {p (x,y),p (11 y),c0 (x,y),1 (x,y)}. (9)

Moreover, there exists a unique (x*,y*) E T that satisfies y (x,y)
00

p (x,y) and y (x,y) = 10 (x,y), and the unique x* and y* are specified by
111

u(x*,l) - u(x*,O) = 1 [u(1,1) - u(1,0)] + [u(Ol) - u(0,0)] (10)
1 1

u(l,y*) - u(O,y*) - [u(1,1) - u(0,1)] + 1 [u(1,0) - u(0,0)]. (11)

Given (x*,y*) as specified:

(i) if y (x*,y*) y (x*,y*) then l - ulI(xy,)

(ii) if 00(x*,y*) Y 01 (x*,y*) then liv - uil is minimized by a

point that satisfies y (x,y) = y 1 (x,y); and y (x,y) = p (xy) = (x,y)

and p 01(x,y) = Y 0(x,y) = p1 (x,Y) are respectively satisfied by points

interior to T at which liv - ull < A/3;

(iii) if P (x*,y*) > y 0(x*,y*) then 1Iv - ul is minimized by a

point that satisfies p (xy) = p (x,y); and y (x,y) = (x,y) = p (x,y)

and • (x,y) = (? (x,y) = p (x,y) are respectively satisfied by points
- 00 11 10

interior to T at which liv - ull < A/3.

The part of Theorem 2 that precedes (8) simply ;ummarizes assertions

spelled out in greatdr dektail following (8). Using (7), the four equations

of (8) give the values of Iv - uI at the four corners of T when (x,y) is

the fixed point in (6). Equation (9) says that the largest value of Iv - uI

occurs at one of the four corners of T for every choice of fixed point in

(6). Since as is easily checked,

V



13

p (x,y) + p (x,y) + p (x,y) + Y (x,y) = A,
00 11 01 10

it is impossible to have liv - ull < A/4. The final part of the theorem

shows how a fixed point for (6) can be identified so that liv - uj < A/3

regardless of the nature of u so long as it is conservative. The interior

point qualification is used in (ii) and (iii) since, for example, Y (0,0)

(0,0) = (0,0) = 0, in which case 1lv - ulI(0,0) = y (0,0) = A.

Proof. Using (7) it is easily seen that yij > 0 for all i,j E {0,1}

and that yij(x,y) > 0 whenever (x,y) is on the interior of T. To verify (9),

suppose first that (x Iy ) is the fixed point for (6) and that (x 2,y 2)

lies in region III of Figure l(a), with x < x < 1 and y < y < 1, and
1 2 1

(x 2,y) # (1,1). Then, by conservatism,

u(x ,l) + u(l,y ) > u(x ,y ) + u(l,l)
2 2 2 2

U(X ,Il) + U(X 2,y 2) u> U(x 'y2 ) + u(x 2,)

u(x ,y ) + u(l,y ) > u(x ,y ) + u(l,y )
2 1 2 2

with at least one strict inequality. Addition of these three inequalities

then gives u(x ,l) + u(,y ) - u(x ,y ) - u(l,l) u(x ,y ) + u(X ,y ) -
12 2

u(x ,y) - u(x ,y ), or y (x ,y ) v(x ,y) - u(x ,y ) ConsequentlyI k 2 2 2 2 2

Iv(x,y) - u(x,y)l is maximized in region III at (x,y) = (1,i). Similar

"analyses in each of the other three regions of Figure l(a) shows that,

regardless oi the choice of (x ,y ) for (6), Iv - ul is maximized at one of

the four corners of T, and (9) then follows immediately.

j• To verify (10) and (11) and prepare for the final assertions in the

theorem, we write y (x,y) = y (x,y) and y (x,y) y.0 (x,y) in terms of

u, using (8), to obtain respectively

I
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u(l,y) - u(O,y) = [u(l,1) - u(0,0)] - [u(x,l) - u(x,0)], (12)

u(ly) u(0,y) [u(1,0) - u(0,l)] + [u(x,l) - u(x,0)]. (13)

Conservatism implies that u(l,y) - u(0,y) decreases in y and that u(l,x) -

u(0,x) decreases in x. Thus, for each x, (12) will be satisfied by a unique

y that decreases as x increases, with y = 1 when x 0 and y = 0 when x = 1.

Similarly, (13) has y = 0 when x = 0 and y = 1 when x = 1 with the unique y

solution for each x increasing as x increases. The resulting curves in T

j described by (12) and (13) are shown In Figure 2. Their unique point of

Figure 2 about here

intersection is (x*,y*) as specified in (10) and (11). This point is given

by the joint s'lution of (12) and (13). If cp 00(x*,y*) y 01 (x*,y*) then all

four Ij are equal to A/4 at (x*,y*) and this point uniquely minimizes

v - uJl!, as specified in (i) of the theorem, following (11).

The following lemma, which is a variation on the theme of the first

part of this proof, will be used in dealing with (ii) and (iii).

LE4MA 1. If (i,j) j (x ,y ) i (x ,y ) and (x ,y 2) is in the rectangle
-- i 1 2 2 2- 2

- (or straight line segment if i = x or j = y ) two corners ui which are

(x ,y ) and (i,j), then yij(x I,y >) y i (x•,y )2

Proof. Suppose first that (i,j) = (1,1) with (x ,y ) and (x ,y ) as
2 2

pictured in Figure 1(a). Then, by conservatism,

u(x ,l) + u(x ,y ) _ u(x ,y ) + u(x ,i)"2 2 2

u(x ,y) + u(x ,y ) > u(xv y ) + u(x ,y )
2 2 - 2 2

u(l,y ) + u(x ,y ) u(x ,y ) + u(l,y )
-- 42 1-2

4'



15

with at least one strict inequality. Addition of these inequalities gives

u(x ,I) + u(l,y ) - u(x ,y ) -u(l,1) > u(x ,1) + u(l,y ) - u(x ,y ) -
1 I 1 1 2 2 2 k

u(l,l), or (p (x ,y ) > (p (x ,v ). The other three regions in Figure 1(a)
II 1 1 1i 2 2

are handled in a similar fashio!,o Q.E.D.

We now return to (ii) and ('ii) of the theo,-em. Consider the point

labeled Q in Figure 2. By Lemma 1, (p (Q) > y ([' ) and y, (Q > y (Q
0 0 0 1) 1 0

and, since y (Q) y (Q ), y (Q) > (p (Q ). Similarly, using Q zid
00 1 11 1 00 0 It 0 0

Q (Q) > (Q). By Lemma 1, y (Q) and y (Q) will be reduced when
2 10 0 0 1 0 V 0 10 0

the fixed point for (6) iL moved from Q in the direction of the arrow

emanating from Q , and therefore liv - u, cannot be minimized by taking Q
0 0

as the fixed point For (6). Similar rezul s apply in the other three

regions of Figure 2. Consequently, minT 1V - u11(x'Y) must occur at a point
T

on one of the (p ef end p = po curve,';. We have already noted that
on I 0 1 .0

the (unique) minimizing point will be (x*,y.-) if p (x*,y*) = (P (x*,y*)
0 0

Suppose as it (ii) that p0 (xy*) < ( 01 ,, * Then, by Lemma 1,

l1 v - ull(x*,y*) < ;Iv - uli(x,y) for every (x,, 0 (x*,y*) on the cp (p y

curve. (A move from (x*,y*) towards (0,1) will inct,ýase (p , which was one
'0

of the maximizing y ij at (x*,y*).) Therefore a fixed ý-)int for (6) that

minimize3 li1v - ulI must lie on the c0 = p0 curve, by h.,'pothesis in this

paragraph, %o (x*,y*) = (p (x*,y*) < y0(x*,y*) = y (x*,y*). As the fixed
0 0 LI1O

K point for (6) moves upwards from (x*,y*) to (1,1) along the Y o curve,

Sy 0(x,y) increases continuously up to A = ( 0 (l,l), p I(x,y) dtcý,ases to

•0 - y (!,1), and p (x,y) and p (x,y), which are equal, may iuct-ite but
- ~0'. 10

eventually arrive at zero at (1,l), It follow- from continuity thaz *here

is a pcilit on this part of the p (p curve where = ( = '/4 >

(p > 0, e.g. Q and with this point as the fixed point for (6) we obta.

L 2
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I!v - ull < A/3 with the use of (9). The remaining parts of the proofq of

(ii) and (iii) are similar. Q.E.D.

If (7) is changed by revers4 c the inequality to u(x,y) + u(x*,y*) >

u(x,y*) + u(x*,y), which might suggest a 'daring' u instead of a 'conservative'

u, then an obvious correspondent to Theorem 2 follows under appropriate sign

changes.

Theorem 2 il-.ustrates typical concerns of approximation theory as

outlined after (3). For Theorem 2, D is the subset of C(T) whose functions

are given by (6) as the fixed point (x ,y ) ranges over T. Unlike most

typical cases, D depends explicitly on u. Theorem 2 shows that A/4 < d(D,u)

< A/3, and (9) implies that D is nonempty. Functions in or near to thoseS~u

in D were identified in the latter part of the theorem.u

The S-mple Multiplicative Form

The basic multiplicative approximation for u on T = [0,1]2 can be

expressed ae v(x,y) = f(x)g(y), as in (2). Although it is not necessary

to align v with u in any specific way, we shall consider the case in which

v(x,y) = u(x,y) whenever x = x or y = y , where (x ,y ) is a fixed point

' in T. This coincides with our alignment of the additive approximation (6),

Given v(x,y) - f(x)g(y) with u scaled so that u(x ,y ) t 0, the specified

alignment implies that

u(x,y WuX ,Y)

v(x,y) u- for all (x,y) E T. (14)
V(XY) u(x 'y)

Although this looks quite different than (6) and indeed is in most cases,
w4•
we giall see momentarily that (6) is a limiting case of (14).
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! I If u has constant sign then v as given by (14) is monotonic. in x or y

when u is monotonic in x or y, but if 0 is in the interior of tho image of

u then monotonicity pi!servation does not generally hold. Another difference

between (14) and (6) is that (14) is not generally affine preser 'ing. In

particular, when (14) is used and au(x ,y) + b # 0,

"ab [au(x,y ) + b]jau(x ,y) + b]
au(x ,y) + b

ab[u - ukx,y )][u - u(x ,y)]
= av(x,y) + b - 1I 1 (15)

u (au + b) 1
11 11

where for convenience we define u = u(x ,y ). This shows that (14) is
11 1 1

affine preserving at (a,b) if b = 0, but it is affine preserving when b # 0

only under very special conditions, i.e. when u = u(x,y ) or u - u(x ,y)

for all (x,y).

The essential nature of v remains unchanged if it (rather than u)

undergoes a positive affine transformation. In particular, if we subtract

b from both sides cf (15) ,ind then divide by a, we obtain

ab
v_ (x, b = v(x,y) + { (}[u u(x,y )I[u - u(x ,y)]. (16)

a - u XY (au + b,• "• " a 11I I

*' ' I . i

For convenience, let K = -b/[u (au + b)] and let v K(x,y) denote the left

band side of (16). Then (16) can be written ao

* u(x,y )u(x ,y)
SV(xY) -I - + Ktu - u(x,y )][u - u(x ,y)], (17)

K U

1 where K is any real number other than -1/u The latter value of K ½s

SI forbidden since it corresponds to b = or b = -• in (16). Any other real-4

t I
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value of K is obtainable from K -b/[u (au + b)], and infinite K is
! 11 11

forbidden by the proscription against au + b 0 in writing (15). It is• 11

easily checked that vK(x,y) = u(x,y ) + u(x 'y) - u(x ,y ), which is the

additive form (6), when K in (17) is set equal to the forbidden value of

-1/u . Hence, by choosing K for (17) arbitrarily near to -1/u 1 , the

multiplicative approximation (17) becomes arbitrarily close to the additive

approximation (6); the convergence of (17) to (6) as K approaches -1/u

easily seen to be uniform. Henie all results stated for the additive case

apply, in the limit, to the multiplicative case.

it is important to note that the utility function u as used in (15),

(16) and (17) is precisely the same function used in (14). Equation (17)

simply describes the family of all basic multiplicative approximations--

uniqce up to isomorphism under positive affine transformations on the

approximations--that correspond to different ways of choosing an oigin and

scale unit for u and that reuder the approximation exact when x x c-,

y . The parameter K in (17), unrestricted except by K 4 -1/u , desrrihb-.

the different approximations in this family. Naturally, it the iixed p ii-

(x ,y ) used in (14) or (17) is changed, then a different family of mulP.-

plicative approximations is described by (17).

T.Th. multiplicative approximation is more flexible than the additive

Sapproximation in the sense that, in addition to x and y , it has the

parameter K that can be manipulated in fitting a simple multiplicative

appfoximation to u. We shall investigate aspects of this flexibility ur, ,be

i,exr several theorems. The first of these follows animediattly from -e

4 discussion tollowing (17). Recall that u = U(x y)

A
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THEOREM 3. Suppose u is naturally additive, so that 11v - ul1 0

when v is specified by (6), and u # 0. Then, for every 6 > 0, there is

a K -1/u such that vK - ull < 6, where vK is specified by (17).

In other words, any additive (and continuous) utility function u on T

can be approximated arbitrarily closely by an appropriate multiplicative

function. Note, however, that the converse of this is not true. Consider,

for example, the naturally multiplicative function u(x,y) = xy. The general

form of (6) for this case is v(x,y) - cx + dy - cd, with c,d E [0,1]. As in

Buck's example of the preceding section, the smallest value of luv - ul1

obtainable in this case is 1/4, which occurs when c - d - 1/2.

Another indication of the flexibility permitted by K is given by the

following theorem, which discusses the possibility of making the multiplica-

tive approximation exact at a point (x ,y ) for which x x and y # y
22 2 1 2

as pictured in Figure l(a). For notational convenience we extend the previous

convention of writing u(x ,y) as u by defining uij according to

uij = u(xiYj). (18)

THEOREM 4. Given u with u # 0, let vK be defined by (17) and let

(x ,y ) be a point in T at which x 2 x and y 2 y . Then VK(x, ) =

u(x ,y ) u for some K 0 -1/u if and only if either:
2 2 22 11

(a) {u =u and u u } or {u =u and u u }, in
11 21 - 12 22 - 11 12 -- 21 22

which case vK(X ,y 2 u fcr every K; or

(b) u 1 u 1 u and u + u 2 u + u , in which case
12 11 21 - 11 22 12 21

vK(X 2 ) = 2f u."2' only if K [u u u 2 u u ]/[u (u - u )2211 22 12 21 11 11 12

(u - ).
11 21
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Proof. To satisfy v(xy ) u we require

u u + Ku [u -u ][u - u ]=u u , (19)
21 12 11 11 21 11 12 11 22

using (17). If u = u then (19) holds if and only if u u ,and if
11 21 12 22

u u then (19) holds if and only if u u . In either case,
11 12 21 22

VK (XY) = u for every K. The only other possibility for u is u
2 22 11 12

u and u u , in which case (19) holds for the unique K specified in
11 21 11

alternative (b) of the theorem. This value of K equals -1/u if and only if
11

u [u u -u u ]=-u (u - u )(u - u ), which reduces to
11 11 22 12 21 11 11 12 11 21

u1u + u u + u . Q.E.D.
S12 12 21

Given (x ,y ) as the fixed point in (6) or (17) with u 0 0, and given
1 11

x 0 x and y # y . Theorem 4 shows Lbat neither (6) nor (17) can be made
2 1 2 1

exact at (x2,Y2) if, and only if, either (u = u and u u ) or
2 2 21 1 1 22 12

u u and u #u ).
12 11 22 21

Our next theorem parallels the final part of Theorem 1 in describing

'best' upper bouvds on 11v - ulj when the multiplicative form (14) is used.

Instead of using (17) we shall work directly with (14), taking min u(x,y) = r

and max u(x,y) = r + 1, and present the bounds as functions of r. The choice

of r corresponds to the choice of K in (17) when, for example, u is f 4 xed with
1

min u = 0 and max u = 1. Because the midpoint r + - of the interval for u

equals 0 when r = -1/2, we consider only r > -1/2 explicitly.

THEOREM 5. Suppose v is specified by (14) with min u(x,y) = r,

max u(x,y) = r + 1, and u # 0. Then:

"3r2 + 3r + 1
(a) If r C C, it is always possible to have lv U11 < T7+ 2r + 1'

and the value of u u(x ,y) that assures this bound is u = (2r 2 + 2r f 1)/

14 "(2r + 1); it -1/2 < r < 0 then liv - ull 1 can be assured by taking

u =r+;
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(b) If t'is monotonic in one variable and r > 0 then it is always

possible to have 1 1v - ull < 1, and this bound is assured by every u E

H(r + 1)'/(r + 2),r + 1]; if u is monotonic in one variable and -1/2 < r < 0,

then 11v - ull < 1 can be assured by taking u r + 1:

(c) If u is monotonic in both variables and r > 0 then it is always
[ r+l

possible to have 1 jv - ul1 I 2r + 1' and this bound is assured by taking

u - r + ~;if u is monotonic and -1/2 < r < 0, then 11v - ull < 1 is assured

by taking u -r +.• ' • 11

This theorem and its ensuing proof show that monotonicity has no effect

on the best general upper bound on liv - uf when the image of u contains

the origin and v is specified by (14). Moreover, the bounds in Theorem 5

"are respectively smaller than, identical to, and larger than the additive

approximation bounds from Theorem 1 for the three cases (a), (b) and (c).

This is illustrated by Figure 3. As r increases, the bounds for multiplicative

Figure 3 about here

, I v approach the bounds for additive v.

Proof. Throughout this proof we write E Iv- ul, or

Su(x,y )u(x ,y)
E I -u(xY)I.

u

"Given r > -1/2, our objective is to identify a value of u between r and

r + 1 that ensures a 'best' upper bound on the value of E regardless of the

ii nature of u so long as min u = r, max u = r + 1, and u satisfies the

4 •monotonicity conditions (if any) that are specified.

•
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If u is subject to no monotonicity restrictions and r > 0 then

1 r + 1 ) 2 r 2 r + i r- -

max E < max (ru r,(r + 1)
TUU

The right hand side is minimized when (r + l) 2 /u r = (r + 1) - r 2/u , or

when u (2r 2 + 2r + 1)/(2r + 1), and this choice of u gives

S3r2  + 3r + 1
max E <- 2r 2 + 2r + 1'

as specified in Theorem 5(a). Continuing without monotonicity, suppose
p

* -1/2 < r < 0. If u > 0 thenS-- 11

max E < max {(r + 1) - (r + i)11.
11 11

The right hand side of this is minimized when u is maximized at u r + 1,11 11

so that max E < 1, given u > 0. If u < 0 then

max E < max {1(r + 1)2 - (r + 1 ) 1 ,r(r + 1) r- ;

and, with u = r, max E < max {-(r + 1)/r,l} = -(r + l)/r. Since -(r + 1)/.

-" 1 when -1/2 < r < 0, the best general result is achieved in t--..s case by

setting u = r + 1, with max E _ 1. This completes the prooi of Theorem 5(a)

For Theorem 5(b) assume without loss in generality that u is increasing

in x. (If u decreases in x, a change in variable from x to 1 - x leads to

the same results.) An analysis of E according to the region of Figure l(a)
that contains (x,y) yields the following conclusions when r > 0.1Li

I,
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u (r + 1)
I. u(x,y) < u(x ,y), u(x,y ) < u . max E < max {- r,-- 1 1 -- 12 -- Ul

1211

ru(xy)- u(x,y)l} max {1,(r + i)(1 - r/u )} - 1;

II. u(x ,y) < u(x,y), u < u(x,y ). max E < max {l,(r + 1)
1 -11~

[(r + 1)/u - i1}

III. u(x ,y) < u(x,y), u < u(x,y ). Same as II;

IV. u(x,y) < u(x ,y), u(x,y ) < u . Same as I.-- 1 1 -- 1I

Therefore max E < max {l,(r + l)[(r + 1)/u - 1]} - 1 whenever (r + I)

"[(r + 1)/u - 1] < 1, i.e. whenevet u > (r + l) 2 /(r + 2), given r > 0.

Suppose next that -1/2 < r < 0. Since this case is intermediate between

(a) and (c) and, in each of these, max E < I is obtained by taking u

r + 1 (see below for (c)), the same result must hold for case (b).

For definiteness in (c) assume that u increases ia both variables.

Given r > 0, an analysis of E by the regions of Figure l(a) yields the

following:

u u

I. u(x,y) < {u(x ,y),u(x,y )}u • max £ < max r,-- 1 1 -- 11 -- U

max iu(x'y-_ u(x,y)l} = u -r;
r~~~)u u 11

II. u(x ,y) < {u(x,y),u } < u(x,y )' max E _ max {(r + 1)(1 - r/u ),

r + 1 - u }, where the terms in braces are computed using u(x,y)

- u(x ,y) and uox,y) = u(x,y );

SIl. u < {d(x,y ),u(. ,y)} < u(x,y). max E < max {tu - (r + 1)1,
1 -1 - I I I

____u____2 r + 1
max I - u(x,y)}= max {r + 1 - u ,

u <u'x,y)<r+l u,
Sr + 1

'4 (r I-u )} = (r + I - u )
JV. u(x,y ) J {u(x,y),u } < u(x y). Same result as II.

4
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Therefore, given r > 0,

r + 1 r + 1
max E < max {u -r,- (u -r),r + 1 -u , (r+ 1-u

11 1 11 11
11 11

max {r + lu -r),- +---r + 1-u )}S t 11 1

(r + 1) max rr+J }.
u u

11 11

The final expression here is minimized when the two terms in braces are

equal, i.e. when u = r + 1/2, in which case max E < (r + l)/(2r + 1). To

complete the proof of (c), assume that -1,/2 < r < 0. Given u > 0 a

regional analysis of E shows that max E is governed by (r + 1)(u - r)/u

whose minimum value equals 1 when u - r + 1. A lower bot,-' n E cannot

be obtained by taking u < 0. Hence max E < 1 with u r + 1 when

-1/2 < r < 0. Q.E.D.

A final comment on the simple multiplicative form is in order before

we consider another type of approximation. Suppose that X is utility

independent of Y and Y is utility independent of X in the generalized sense

discussed by Fishburn (1974) and Fishburn and Keeney (1974). Then, with'2 (x ,y ),(x ,y ) E T such that u u and u u , where u " u(x ,y)
0 0 ý 11 01 11 10 01 1

and u, = u(x ,y) as in (18), it can be shown that 1iv - ull - 0 when v

is defined by

(u u - u u )[u(x,y) + u(x ,y)- u

+ (u + u - u - u )u(x,y )u(x ,y)
V(A,y) 00 11 01 10 1 (20)

(u -u )(u -u )
V. 01 &1 10

"If u is naturally additive then u + u u + u and (20) reduces to00 Ii 0' 10

(6). If t, + u u + u then (20) is identical to (17) when

1400 V. 01 '0
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K (u u - u u )/[u (u - u )(u - u )], and this value of K is
11 00 01 10 11 11 10 11 01

not equal t.o -1/u 1 . This shows that, when u is not additive, the multi-

plicative form (14) or its counterpart (17) corresponds to the generalized

version of Keeney's notion of utility independence in each direction.

The Simple Additive-Multiplicative Form

The simple additive and multiplicative approximations are exact along

the two heavy line segments shown in Figure l(a) when (x Iy) is the fixed

point used in the approximaticns. We shall now examine a mixed additive-

multiplicative approximation that is based on two fixed points, (x ,y ) and1 1

(x ay), and that is exact along the four heavy line segments of Figure l(b).
2 2

A different approximation that is also exact when x E {x ,x } or y E ly ,y 2

will be mentioned iater in section 5.

THEOREM 6. Suppose that

v(x,y) - f (x) + g (y) + f (x)g (y), for all (x,y) E [0,1]2, (21)
1 3 3

that v(x,y) u(x,y) when x E {x ,x 2 or y E {y ,y 2, and u + u 2 u +
- -1 2 -- 1 2 - • 22 •2

u. Then

, v(x,y) 1 u {u(x ,V)u(x,y ) + u(x ,y)u(x,y ) (22)
u +u -u -u 1 1 2 2

22 :2 21
- u(x ,y)u(x,y ) - u(x ,y)u(x,y )

-*1 2 2

V + u(x ,y)[u - u + u(x ,y)[u - u
1 I 22 .i 2 12

+ u(x,Y )[u - u I I u(x,y )[u u u
1 22 12 2 )1 21

+u u -u u I
12 21 11 22

or, equivalently,

SI
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V(X,y) u(X,y) + u(x ,y) 
(2u1 (23)

[u(x,y) -u(xy) +u -u]u(x ,y)- u(x ,y) +u -u]
+ 2 1 11 12, 2 1 11 21SU +u -u -u'

11 22 12 21

and v is affine preserving.

Proof. Given (21) and the other initial conditions of the theorem,

substitution of x for x and then x for x in (21) gives
1 2

g (y) + f (X )g (y) u(x ,y) - f (x),
2 3 1 3 1 1 1

g (y) + f (x)g(• - u(x ,y) - f (x).
2 3 23 2 1 2

Simultaneous solution of these equations for the 'unknowns' g (y) and g (y)S .2 3

gives

f (x )Mu(x ,Y) - f (X)] - f (x )[u(x ,y) - f (x)I

2 f (x)- f (x)
3 2 3 1

[u(x ,y) -f (x)] - [u(x ,y) -f (x)]g (y) 2 1
3 f (x)- f (x)

3 2 3 1

Substitution of y for y and then y for y in (21) leads, in similar fashion,
2 2

~~1-0

g (y )[u(Xy - g (y g y )[u(x,y ) - g (ySf (x) . 2 1 2 2 -L.
g (y) g (y)

3 2 3

41[u(x,y)-g(y)J [ukx~y)g (y)
f (X) 2--~ 2 23 g 3(y)2-g(y)I

In addition to these expressions for g, g 3 f and f , the given conditions

S• require

4

r. I
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u f (x) + g (y) + f (x)g (y)
11 1 1 2 1 3 1 3 1

u f (x) + g (y) + f (x)g (y)
12 1 1 2 1 3 1 3 2

u f (x) + g (y) + f (x) g(y)
21 1 2 2 1 3 2 3 1

u f (x) + g (y) + f (x)g (x),
22 1 2 2 2 3 2 3 2

so that [f (x) - f (x )]g )y gy ) = u + u - u - u , which
3 2 3 1 3 2 3 1 11 22 12 21

is nonzero by ,•resupposition. HenLe the denominators of g , g , f and f
2 3 1 3

do not vanish. By substituting the foregoing solutions for g, g , f and
v2 3 1

f into the right hand side of (21) and then using the displayed equations
3

for u , u , u and u , it is readily verified that v is given by (22).
11 12 21 22

Ss The equivalence between (22) and (23) is most easily established by showing

that the right hand side of (23) 'reduces' to the right hand side of (22).

The form of v given by (23) shows imrcdiately that v is affine preserving.

Q.E.D.

Although (22) guarantees Iv - uj = 0 for more line segments in T than

A does either (6) or (14), analysis of 11v - uli appears to be considerably

more difficult for (22) than for the simple additive or multiplicative
4'

approximations. Because of this I shall discuss only one specific context

for (22) that has interesting and easily derived properties. The form of

(22) used in the ensuing theorem might be thought of as a boundary model

or perimeter model since it guarantees that Iv(x,y) - u(x,y)! = 0 whenever

(x,y) lies on the boundary of £.

THEOREM 7. Suppose u is conservative [see (7)] and v is specified by

(22) with (x ,y) = (0,0) and (x ,y2) = (1,i). Then v is conservative also

and lv - ull < W/2, where A = u(1,0) + u(0,1) - u(0,0) - u(l,l).
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This theorem is directly comparable to Theorem 2 which uses the additive

approximation. Theorem 7 does not guarantee a lower IIv - ulI than does

Theorem 2 (where liv - ull < A/3). However, i1v - ull for (22) can be

considerably smaller than A/4, and can equal zero, whereas I v - ul1 must

be at least as great as A/4 when (6) is used for v. Moreover, the boundary

model form of (22) has the attractive property of conservatism preservation.

Proof. The form of (22) specified in Theorem 7 can be written as

v(x,y) -• {u(O,y)[u(x,O) - u(x,l) + u(l,l) - u(l,O)] + u(l,y)[u(x,l)

- u(x,O) + u(O,0) - u(Ol)] + u(x,O)[u(l,l) - u(O,l)]

+ u(x,l)[u(O,0) - u(l,0)] + u(0,1)u(l,O) - u(O,O)u(l,l)}.

Therefore, when y' > y,

v(xy,) - v(xy) E {[u(O,y') - u(O,y)][u(x,O) - u(x,l) + u(l,l) - u(l,O)]

+ [u(l,y') - u(l,y)][u(x,l) - u(x,O) + u(O,O)

- u(0,l)]}

>0C

"since, under conservatism, A > 0, u(O,y') - u(O,y) > 0, u(l,y,) - u(ly) > 0,

and each of u(x,O) - u(x,l) + u(],l) - u(l,0) and u(x,l) - u(x,O) + u(0,0) -

"•_ u(0,1) is negative unless x E {0,1} in which case one of these terms is zero.

': Therefore v increases in y. Similarly, v increases in x.

To verify conse:vatism, or (7), for v, suppose x < x" and y < y'. Then,

after cancellations and rearrangement, we obtain

v(x,y,) + v(x,y) - v(x,y) - v(x",y') =

.[u(O,y,) - u(O,y) - u(ly') + u(l,y)][u(x,O) - u(x,1) - u(xO) + u(x',l)]
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Sand this is positive slice [u(O,y') - u(O,y) -u(l,y') + u(l,y)] > 0 and

[u(x,O) - u(x,l) - u(x',0) + u(x',l)] < 0.

Finally, since both u and v are conservative and v = u on the bordLr

of T, if A < A < 1 and 0 < y < I then

max {i,(0,y) + u(xl) - u(O,1),u(x,O) + u(l~y) - u(1,0)} < min {v(x,y),u(x,y)}

< max {v(x,y),u(x,y)} < min {u(0,y) + u(x,O) - u(0,0),u(x,l) + u(l,y) -u(l,l),

so that

Iv(x,y) - u(x,y)I < min {u(x,O) - u(x,l) + u(0,l) - u(0,0),

u(x,l) - u(XO) + u(1,O) - u(l,l),
(24)

u(C,y) - u(l,y) + u(l,O) - u(0,0),

u(l,y) - u(Oy) + u(Ol) - u(l,l)}.

The four terms in braces in (24) are positive under conservatism and their

sum equals 2A. Hence the smallest of these four cannot exceed A/2. There-

fore Iv(x,y) - u(x,y)l < A/2 for all (x,y). Q.E.D.

fi The following assertions, whose proofs are left to the reader, make

additional connections with our previous discussion of conservatism. Let

R(x,y) equal the right hand side of (24), with v as in Theorem 7. Then

R(x,y) is uniquely maximized at the point (x*,y*) specified by (10) and (11),

ti with R(x*,y*) = A/2. R(x,y) decreases on each ray out from (x*,y*) and is

constant on the borders of rectangles whose corrers lie on the y =

and y =y lines of Figure 2. Tio such lo'i of constant R are identif~ed
0 •0

by dashed lines on Figure 2.

4
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4. LINEAR INTERPOLATIONS

The simple forms of (2) that were examined in the preceding section

have each fi and g, as either the identity function or an exprecsion based

on conditional utility functions for one of the variables. In the present

section we shall consider approximations by linear interpolation in which

the functions involved in (2) that are not based on utility values are more

,'omplex than the identity function but nevertheless retain fairly simple

forms. Needless to say, a vast array of nonlinear interpolation methods

could be used to approximate u(x,y), but, with the exception of a quasi-

linear form that is mentioned below, we shall not go into these.

The approximations in this section are based on a set {x ,...,x I of
"1 1 p

p_> 2 values of X and/or on a set {y ,...,yq} of q > 2 values of Y, where

0- x < x <...< x - 11 2 P (25)

0 - y < y <...< Yq - 1.

Within the context of (25), we define the - lowing nonnegative piecewise

linear functions:

xi+ - x

if xi < x x< +
xi+-I-i * - -x

01i(x) - (i = 1, .. p -1

ji otherwise

1 - a_ i(x) if xi 1 < x -_ xi and i > 1

c-(x) =fac(x) if xi< x < X,+ and i < p ,. p);

otherwise
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•] 8j(Y) J+' YJ-- -JY+-- if Y ly,<y a...,q -1 )

J-0 otherwise

1 i- .8j t(y) ify Y I - -y and j > 1

S.... y) " y) if yj < Y+ and j < q (j =l,.,)

o- otherwise

The and an functions are continuous on [0,1]. For example, with 1 < i < p,

c* (x) is zero up to xiii increases linearly from 0 to 1 between xi and xi,

decreases linearly from I to 0 between xi and xi+,, and is zero after x•+.

It is also useful to observe that

ct*(x) + ct* (x) - ] on [xi)xi] for i a l,...,p - iti i+i i'x+1

TY) + 1* (y) - 1 on [yj yj+1I for J = l,...,q - 1,

p q
and, more generally, that Z a*(x) = Z 5*(y) -1 for all x and y.

i-iJ

Four Models

Within the context of the foregoing definitions, we shall consider the

following four approximations for u:

v (x,y) = Z ct(x)u(xiy) for all (x,y) E T

q
v (x,y) = Z 52(y)U(X'yj) for all (x,y)

Sv (x,y) = v (x,y)/2 + v (x,y)/2 for all (x,y,
3 2

4
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4v (x,y) = Ma(x) W(y)u + ai(x)[l - S(Y)]u.. + [. - 1

4 i ij i j i,j~i j i+j

+ [i - ai(x)][l - %(Y)]ui+l,j+1  for all (x,y) E [xi,xi+1] X

[yj,y,+,], with i l,...,p - 1;

J = l....,q -i

where uij = u(x 1 ,yj) as iv. (18). The points in T at which these approxima-

tions are exact are illustrated by Figure 4(a): v - u along the vertical

Figure 4 about here

lines; v u along the horizontal lines; and v - v - u at the pq lattice

points (x ,y ),(x ,y),...,(xpy ). These assertions follow immediately

from the definitions and the observation that

xi+I - x. x - xi
v (x ,)U(x 1,y) + ( x )U(xi+1 ,y) if x C x < xx (26)

(xi+) -"iX+ ,i - - i+1

yj1- Yy - y

(x,y) ( Y r1+ )U(X,yj) + (---J--)U(X,yjl) if y< ý y < (27)

The determinations of v(x,y) for (x,y) E [xi,xi+F] x [yj~yj+l] are noted with

reference to Figure 4(b). The value of v (x,y) is the convex linear combina-
1

tion .f u(xi,y) and u(xi,+,y) shown by (26); v (x,y) is the linearly inter-
2

polated value between u(x,y1 ) and u(x,yj+1 ) shown by (27); v (x,y) is the

average of the horizontal and vertical interpolations given by v (x,y) and

v (x,y) [modification of v to the form Xv + (1 - X)v allows different
2 3 1 2

emphases to be placed on the horizo'tal and vertical interpolations]; and

v (x,y) is given by a weighted average of the four u values at the corners

of [xi~xi+,] X [yj,yj+I]. The quasi-linear approximation v can be thought
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of as a two-stage linear interpolation process since, with a = ci(x) and

•' 8= 8j(Y),

v (x,y) = av (xi,Y) + (1 a)v (xi+y)

• ~= cdguij + (i - 8)ui,j+i] + (1 - a)[Bui+1 ,j + (1 - $)ui+ij+,]
I? = a[auij + (1 - a)ui+ ,] + (1 - 8)[cu + ( - )u

i+ i+Ij+ i+1,j+1

- $v (x,y ) + (1 - a)v (x,y
4 j J+ •

Moreover, if u is linear along each of the four border line segments of the

rectangle [xi,xi] X [yJy+, then v v throughout the rectangle, but,

without such linearity, coincidence of v and v is assured only at the four

corners.

There are several major differences between v and the other three

approximations. First, v , v and v presume that p, q or p + q conditional1 2 3

utility functions are evaluated, whereas v uses only the u values at the pq
4

lattice points. Secondly, v , v and v are clearly within the format of1 2 3

(2), whereas this is not at all clear for v . I leave it to the reader to
4

show that v can indeed be viewed as a special case of (2), but it appears
4

that this can be done only when some of the fi and gi functions have dis-

continuities. As shown by the definitions of v , v and " , and by previous

discussion, the fI and gi functions used therein are all continuous on [0,4].

Despite the-'e differences, all four approximations possess certa.n

preservation properties defined earlier.
I

THEOREM 8. Each of v , v , v and v is continuous, affine preserving,
L 2 p

monotonicity preserving, and conservatism preserving.
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Proof. Because of the similarities among v , v , and v , it will
1 2 3

suffice to consider only v and v . Continuity for v is obvious and it is

easily seen to hold for v . Affine preservation is easily checked. For

monotonicity suppose first that x < X x* < xi+I and that u is monotonic

in x. Then, by (26),

* Xv (x*,y) - v (xy) x)[u(xi+,y) - u(xi,Y)I, (28)
1 i+1 'i

so that v (x*,y) - v (x,y) has the same sign as u(xi+1 1y) - u(x 1 ,y). Hence1 1

v is monotonic in x on the interval [xi,xi+1 ] in the same sense that u is

monotonic in x on this interval. Since this is true for all [xi,xi+.1, v

is monotonicity preserving in x. Suppose next that yj < < <y* yj+l and

that u is monotonic in y. Then, by (26),

v (xy*) - v (x,y) - (i+i -x - u(xx.Y)]
1 x+, -Xj)[u(xiY*) -

+ % xi Ux '*

(xi+I - x [u(xi+1 u(xi+1 y ,y )],

-' from which it follows that v is monotonicity preserving in y. With regard

to v, if x < x < x* < xi+ and y E [yj~yj+1  then

v (X*,y) - V (x,y) = [ai(x) - ai(x*)][aj(y)(ui+J - Uij

(29)
SI+ (I - 8j(y))(ui+I,j+i - ui,j+)2

with Ca.(x) > a.(x*). Hence if u is monotonic in x then v is monotoaic in x

in the sawe sense as u on the interval from xi to xi+1 and, since this is

true of each such interval, v is monotonicity preserving in x. The proof

that v is mcrotonicity preserving in y is similar.
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To establish conservatism preservation we work first within a rectangle

[x,xi+1] x yy ] with xl ! x < x* < x,+, and yj y < Y* < YJ+,' and

assume that u is conservative [see (7)]. Using (28),

v (x,y*) + v (x*,y) - V. (x,y) - r(x*,y*) x I x )[u(xiy*) + u(xi+,'Y)
1 1 1 1 xi+ i X ~

- u(xiy) - u(xi+ 1,y*)].

Since conservatism for u implies that the right hand side of this equation is

positive, it follows that v is conservative in the rectangle. Using (29),1

V (x,y*) + v (x*,y) - v (x,y) - v (x*,y*) - [a (X) - ai(x*)][B (Y) - 0 (Y*)]

[uij+1 + ui+l,j -uij

- ui+IIJ+l]

and, since each term on the right hand side is positive, the left side is

positive also. Hence v is conservative in the rectangle. Therefoie both

v and v are conservative in every rectangle of the form [xi,x i+] x

[yjtyj+,]. It then follows without difficulty--by breaking any rectangle

[x,x*J x [y,y*, into subrectangles according to the grid of Figure 4(a), and

adding up the inequalities implied by conservatism on each of the subrectangles--

that v and v are conservative throughout T. Q.E.D.
1 4

Uniform Norm Cor.siderations

Given (25) and (x,y) E [xi,xi+] x [yj,yj+ 1 ', the absolute differences

between u(x,y) and the approximations defined above are as follows:
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Vv (x,y) - u(x,y)= Ict 1(x)[u(xi,y) - u(x,y)] + (1 - ci(x))[u(xji+,y) - u(x,y)]I

W,,• 1v2 (xYy) u(xy) I i(Y)[u(x,yj) -u(x,y)] ++ (1 - y u(x,y - U(X,Y)]I

IV (xy) -u(xy)l = y (x)[u(x'Y) u(x,y)] + (1 - a (x))[u(xi+ ,y) - u(x,y)]

+ 8j(Y)[u(X,yj) - u(x,y)] + (1 - aj(y)[u(x,yj+.)

Iv (x,y) - u(xy)I lai(x)j(y)[uij - u(x,y)] + 1i(x)(1 -
j j (Y) [i'j+ý.

-u(x,y)] + (1 - Wa) (y)[u+ - u(x,y)]

+ (1 - ai(x))(l - a(y))[ui+ 1 ,j+j - u(x,y)].

In the present setting it is natural to consider the effects of increases in

p and/or q on liv - ul . 5Ithough this can be done with either equal or

unequal spacing of the xi or y, in [0,1], I shall consider equal spacing for

expository simplicity. Thus, let v(p) denote v when the p points in (25)

are equally spaced in [0,1], with x, = (i - l)/(p - 1) and xi+, -x

i/(p - 1); let vq denote v under similar convention; let v - v /2 +

1 2)/2, and let v 4)denote v when p = q in (25) with xi (i - l)/(p - I)

and y, - (j - l)/(p - 1).
We shall now observe that each Ilvp)- - ull for k 1,2,3,4 approaches

zero as p gets large. This will be done using moduli of continuity, which

are measures of the variations of continuous functions on compact sets. With

respect to the utility function u on T, we define

w(u,h) = max {lu(x,y) - u(x',y')I: x,x,y,y' E [0,11, Ix - x'j h

and ly -- y'i hi,

u, (u,h) = max {Iu(x,y) - u(x',y)l: x,x',y E [0,11, Ix - x'l -h ,

w 2 (u,h) max {!u(x,y) - u(x,y')I: x,y,y" E (0,1], ly - Y'l < h},
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for all h E [0,i. Considered as functions of h, W is the modulus of con-

tinuity for u, and w and w are partial moduli of continuity for u. These
1 2

definitions presume nothing about differentiability or monotonicity for u.

6- It is easily seen that the moduli are nonnegative, nondeereasing and satisfy

"max {w (u,h),w (u,h)} ,< w(u,h) < co (u,h) + w (u,h).
1 2 12

Moreover, because u is continuous on a closed and bounded set, it follows

readily from standard results (e.g., Bclzano7Weierstrass theorem, existence

of convergent subsequences) that each of w(u,h), w (u,h) and 2 (u,h)
1 2

approaches zero as h - 0.

THEOREM 9. lv p - ull 0 0 as p - • for each k E {1,2,3,4}. In

particular,

I.jvjp) - ul < Wk(ul/(p - 1)) for k - 1,2,

IIV(p) - ull < [w (u,l/(p - 1,) + w (u,l/(p - 1))]/2 < w(u,l/(p - 1)),

,. [v(p) - u11 < W(u,l/(p - 1)),

1

vI ) - uf I wk(U, 2 (p - l)) for k 1,2,
1 : v k(p) - ull < [ k (u', 1 )1

- 1 2 (p - 2)) + w2 (u' 2 (p-))1 2 1 2( 1)),

1v(p) - ull < W(u,6(p 9

Ptoof. The initial results of the theorem follow readily from the

expressions for IVk(X,y) - u(x,y)l written earlier and from the foregoing

comments on the moduli of continuity. For example, omitting u from U' for

notational convenience,

;c
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Iv~~~~y -u(x,y)I. act(x)Iu(xi) -U(x,y)I + (1 cj(x))Iu(xi+,,Y) -u(X,Y)l

< a i(x)W((l - a I(x)](x4-+ 1  X xi) + (1- t(x))

1 I a (x)(xj) 1 - Xd))

1 - c~(X) a i(x)
a ctpx)W -1 )~ + (1 a- x) 7 1

so that

If w is concave in h then aw I ((1 - c)/(p - 1)) + (1 - cL)w (ct/(p-1)

w Q(lc( a c) + (1 - c)c]/(p - 1)) < w ([I/ 2 ]/(p - 1)). To verify the

concavity result for v ,we note first tha*

IV~p(X, - u(x,y)I < .czi(x)a (Y)Iuij - u(X,y)I + cxi(x)(l - YW

-u(x,y)I + (1 - ai(x))a %(Y)Iui+loj -u(X,Y)l

+ (1 - a (x))(1 -~(Y))Iuj+ 1 ,+ - u(x,y)1

<. ai We(Y)w(max {1 a- x, a S(y))/(p - 1)

+ W4(x( -j()L(mx1- i)%(Y)I/(P - M)

+ 1 ci (x))(1 (y))w(max - 1))

Therefore

14
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1 v(p) - ull < max [(a(max {1 - a,l - a}/(p - 1))4 -- o<a< !

oF<_1  + ca(l - B)w(max {1 - u,ý}/(p - 1))

+ (1 - a)w(max {li -l }/(p - 1))

+ (1 - a)(1 - B)w(max {a,a}/(p - 1))],

Suppose that a < _ < 1 a. Then, assuming concavity for w,

-) ul <_max [cxw(1 +

+ (1 - a)aw( _--) + (1 -a()(1 a
p - p 1

< max [aw 1(--- + U1- a) - )

< max w( (1- o[, + 2B(1 -(1 )

p-i
tl .~~~9/16-op-

where the maximizinig values are a - 1/4 and • = 1/2. Because of the

symmetry in a and 1 - c, and in a and 1 - B, this suffices to establish the

final conclusion of the theorem. Q.E.D.

Although Theorem 9 might be used in practical situations to estimate an

upper bound on the maximum difference between v(y,y) and u(x,y) for a given

p that can be assured by a linear model, it says very little about good ways

to choose the xi and/or yj for (25) in attempting to minimize Iv - ull for

fixed p and/or q.

To illustrate the latter idea, suppose u increases in both variables

and v is used with p = q = 3. Then the best general assertion that can be

made for an upper bound on l1v - ull is

. !t
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liv 4 ull < m [ (max {u(x ,l) u(O,y ),u(l,y ) u(x O),
-o<x2<1 2 2 2 2 (30)

So.Sy <z u(l,1) - u(x ,y ),u(x ,y ) -10,W].S-2 2 2 2

For convenience set u(0,0) 0 and u(1,1) - 1, and let V denote the value of

the right hand side of (30). Then, because of 1 - u(x ,y ) and u(x ,y ) 0
22 22

in (30), V > 1/2. In any event, it can be shown that some point that

satisfies u(x ,1) - u(0,y ) u(l,y ) - u(x ,0), or u(x ,0) + u(x ,l) -
2 2 2 2 2 2

u(0,y ) + u(l,y ), must be a minimaxing point for V. There exists a unique
42 2

(x*,y*) that satisfies u(x*,0) + u(x*,l) - u(0,y*) + u(l,y*) and u(x*,y*) 2
2 2 2 2 2 2 2 2

1/2. Consequently, if u(x*,l) - u(0,y*) < 1/2 then V - 1/2, and if u(x*,l) -
2 2 _ 2

"u(0,y*) > 1/2 then V > 1/2. In the latter case, (x*,y*) may or may not be a
•, •minimaxing point for V, depending on the behavior of u(x 2Pi) - u(0,y 2

relative to u(x y2) along the curve through T that gives the (x ,y ) solu-

tions to u(x2,0) + u(x,1) - u(0,y ) + u(l,y ). However, the choice of
222 2

(x*,y*) as the interior point to use for v when p - q - 3 appears to be
2 2

reasonable.

5. EXACT GRID MODELS

-' In concluding our discussion of approximations for u on T [0,112 we

shall consider several approximations that are exact (v - u) on both the

horizontal and vertical line segments of a grid on T such as shown in Figure

4(a). To focus the discussion we shall say that an approximation v is an

i Iexact grid model if v(xily) = u(xiy) for all y E [0,1] for at least twoJ distinct xi, and if v(xiy = u(xy) for all x E [0,1] for at least two

j distinct yj,
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The only approximation of previous sections that is an exact grid model

is the simple additive-multiplicative model discussed at the end of

section 3. Approximations v and v of the preceding section are not exact
3 4

grid models since they are exact only at the lattice points or intersection

points of the grid. On the other hand, the simple forms of section 3 can all

be adapted to serve as exact grid models on any grid formed from a finite

number of horizontal and vertical lines through T by applying these forms in

a patchwork or cut-and-paste fashion to different sections of the grid.

Suppose, for example, that (25) holds with p > 3 and q > 3. Then, provided

that ui + ui+,j+j - uij+i - ui+i,j # 0 for each (i,j) E {l,...,p - i} X

S{l,...,q - 1}, the simple additive-multiplicative form can be applied separately

1• to each rectangle [xi,xi+1 ] X y That is, (23) with x ,x ,y ,y
1 2 1 2

replaced by xixi+1 ,Yj 9 Yj÷l is taken to hold throughout [xi,xi+1 ] x [yj'yj+1]

for i = l,...,p - 1 and j = l,...,q - 1. The resultant approximation is exact

on the grid of Figure 4(a).

Alternatively, with 0 x < x' < x < x' <..< x < x x =1
1 1 2 2 P- 1  P-i p

and 0- y ", < y < y <.< y < y < y =1, one could use the
1 1 2 2 q-1 q-i q

additive form

v(x,y) = u(x,"') + u(xY) - u(xA,y') for all (x,y) E [xi,xi+1 ) y

except that [xx is replaced by [xi when i = p - 1, and [y.,y. )
excepL L~aL+1 djby [x

is replaced by [y ,yj+ ] when j = q - 1. The resultant approximation is

exact on the grid determined by x',x',...,x•_ and y',y,...,y_, but it
1 2p1 1 2 -

has one serious disadvantage that is not shared by the patchwork adaptation

of the simple additive-multiplicative model based on (23), and that is its

propensity for discontinuities along the xi and y. lines. A similar
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disadvantage arises with an adaptation of the simple multiplicative model.

Hence, because of the analytical difficulties that accompany discontinuities,

the only one of the three simple forms of section 3 that appears to adapt

itself reasonably well to a patchwork format is the additive-multiplicative

form. The adaptation of this form is continuous, and Theorem 7, involving

conservatism, is easily generalized to the patchwork format.

A Generalized Multiplicative Form

In the remainder of this section we shall consider a generalization of

the simple multiplicative form that is not a patchwork adaptation. It is

)[ based on m fixed points for X and for Y subject to

0 < x < x <...< x < 1
- 2 m-- (31)

0-< y < < <' < Ym < ,1 O Yl Y2 m--

and is derived directly from (2) and the restriction that v = u along each

line determined by the 2m fixed points in (31). Its basic form is given as

m m
v(x,y) = cij u(x,y 1 )u(xi,y), (32)

i=1 j=1

where the cij are based on Lhe m-by-m matrix of uij values (i, 2 = 1, .,m).

When m = 1, c 1/u and (32) reduces to the simple multiplicative model

(14). Whin m = 2, c u /A, c -u /A, c = -u /A, and c u /A,
11 22 12 21 2- ý2 22

where A = u u - u u , the determinant of the uij matrix. Thus the
• 1 22 12 2i i

m = 2 version of (32) provides an alternative to the exact 2-by-2 grid model

of the simple acditive-multiplicative form so long as the u,. matrix isn r
aonsingular.
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Approximation (32) seems attractive for several reasons. It has a nice

analytical form, is exact on the grid determined by the points in (31), and

is continuous. Moreover, if u is differentiable then v is differentiable.

However, it is neither affine preserving nor monotonicity preserving, and it

does not submit easily to analyses of i1v - ulI. Although very little is

known about liv - uli at the present time, it is hoped that further research

will determine the conditions under which (32) gives a good approximation

to u.

prds Because of the absence of interesting results on liv - ujI, I shall

present only the basic derivation of (32) frov (2) and note the effects of
I -

positive affine transformations on this approximation. This presentation

parallels the cdiscussion for the simple multiplicative form in (14) through

(17). In the present setting we shall presume that m > 2 and, given u and

(31), let U denote the m-by-m matrix [u ij1. Also let Uij be the (m - l)-by-

(m - 1) matrix obtained from U by deleting its ith row and jth column and,

with det the determinant function on square matrices, define

A = det (U)

A = (-1) i+ det (Uij) ij = ... ,m)

so that A is the cofactor of uij.
ii ij

THEOREM 10. Let u and (31) be given with m > 2, and suppose that

v(x,y) = Z fk(x)gk(y) for all (x,y) E [0,1]2 (33)

with v(x,y) = u(x,y) whenever x E {x ,...,xml or y E {y ,...,y,}, and that

U is nonsingular (A j 0). Then
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m m
v(x,y) = Z (Aij/A)u(xyj)u(xiY) for all (x,y) [E0,1] 2. (34)

i=i J=i

m m
Moreover, if a and b are real numbers with a > 0, and if aA + blm E A

i-. J-1 ii

S0, then

ab m m
v#• (x b .v(x,y) + K(ab)[A - E A u(xiY)]

R ,~ 
j= (35)

!•[A- E Z A ij u(x,y )],ni I j=1

where

K(a,b) - -b (36)
m m

A[aA + b E E A ij]
!.. iml J=I

Expression (35) is the appropriate generalization of (16) or (17) for

m - 1. As seen by (36), the only real value of K that cannot be obtained

with admissible values of a and b is K = -I/(A ij Aij), corresponding to

a = 0, provided that Eij Aij 0. If Eij Aij = 0 then every real K is

abadmissible. Moreover, if b # 0, then (35) shows that v (x,y) z av(x,y) + b

if and only if [A- Zij Aij u(xiy)][A - Eij Aij u(x,yj] 0, which holds

if x E {x ,...,x} or y E {y ,...,ym} since E Aij ui Z = A A and
I m i ju j ij uij

Zi Aih ij = 0 if h 0 j and Ej Akj uij = 0 if k # i, but which cannot be

expected to hoiL otherwise.

We conclude with an outline of the proof of Theorem 10 since the

complete proof is rather long. Assume henceforth that the first sentence

of the theorem applies, Substitution of x. and then y. into (33) gives
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m
L fk(xi)gk(y) = u(xi,y) i =•, k=1i

m
k= f U(X,yj) J = l,...,m.i'k=1 kI~ ky

Let F be the m-by-m matrix whose entry in row i and column k is fk(xi), and

let G be the m-by-m matrix whose entry in row j and column k is gk(Yj

Fik and Gik are defined similarly to U by deleting rows and columns. Then,

if F and G are nonsingular, Cramer's rule gives

m ~~~i+k (Fk/ekS~mgk(y) F u(xi,y)(-l)i+k det (Fik)/det (F) k = 1,...,m
i-=

fk~x) X1 .uxy)(lJ+k dt(k)/det (G) k = 1,...,M.

j,=1

It then follows from the product and transposition rules for determinants

(with a prime denoting transposition) that det (F) det (G) = det (F) det (G')

- det (FG') - det (Z k fk(xi)gk(yj)]) = det (U) - A, since the initial

conditions require u1 . = Zk fk(x )g (y.)' and hence that neither F nor G isI' singular with

mI m m m
f () E E u(xy)u(xiy)(-l)i+j Z det (Fik Gk) (37)

k= i= j=k=i

It can be shown that det (JUj) = det (Fik Gik) and therefore (33) and

(37) yield (34).

Assume henceforth that (34) holds and that aA + bEij A~j 0 0 with

a *ý0. et ab [auij + b] with A ab =dot (U ab ) and Aijb the c ofactor of

au. . - b in U Then direct substitution in (34) givesp 1J

4

.,I
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km

abm m ab ab
v (x,y) = E (Aij/A )[au(x,yj) + b][au(xi,y) + b]. (38)

A=1 j=i

Let a denote a generic permutation on {l,...,m}, let sgn(a) be the number

of inversions in a (an inversion occurs when i < j and oi > oj), and let

'r(i,k;a) be the product of the m - 2 u ja for those j • {i,k}. It can then

be shown that

m m
ab m A + am- b E E Aij, (39)

i=l j=i

Aab .a m A + am-2 b E (_-)sgn(a) 7 rr(i,k;a), (40)

ij ij{:i=j} {k:ki}

and that

sgn(a) 
m m

A Z (-1) E 7i(i,k;a) A( Z E Akh)
{al:a=j} {k:k~i} k=, h='(

m m
- ( X Ai)( Z A

h=1 i k=

The last identity allows one to conclude immediately that the sum of its

lefL hand side over i equals zero and that the sum of its left hand side

over j equals zero. This fact along with substitution of (40) and (41) in

(38) gives

Aab vab (xY) = [a M Ai + AbT+ a .(-]2sgn(a) ETr(i,k;O)][a2 u(x,y.)u(xi,y)
+ ab(u(x,yj) + u(xi,y)) -r b 2 ]

am Zij Aij u(x,y.)u(x1 ,Y) + am bZ 13 A ij(u(x,y) + u(xi ,Y))

+ am- b 2  ij Aij + am b .ij u(xy )u(xiY)[Ai Zkh AkhLi
" ~~- ([ Aih)(>k A~j)]/A.
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Multiplication by A and the use of (34) then gives

4 ab ab m+1AA v (X,y) =a A' v(x,y) + am bA[E% Ai. U(XYj + E A u(x y)]Sij ij I
M-I m

+ am b' AZ A j+ a bAE~ ~ v(x,y)

-am b(Eij Auj u(x~y j))GEij A i. u(xily)) + mbA' -. am WM

m m- m~bA[a A +a' bE i A ]j + av(x,y)A[a A + a bE~ A .1

ii ii ij -iji

+ (E A~ u(X,y.ME Au u(xi,y))]

ab mj in-i i

which, since AA ab A[a mA +a M1bE by (39), yields

~ab ax) vx) b[A - E i A u u(X,y i)][A - E ij Ai U(x1 y)

Sin.:e this is equivalent to (35), the outline of the proof of Theorem 10 is

completed.

W4
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